Kucoin Extension Wallet - Client Side

CertiK Assessed on Jan 14th, 2026

- @ CERTIK SUMMARY | KUCOIN EXTENSION WALLET - CLIENT SIDE

CertiK Assessed on Jan 14th, 2026

Kucoin Extension Wallet - Client Side

The security assessment was prepared by CertiK.

Executive Summary

TYPES PLATFORM METHODS

Wallet Browser Extension Dynamic Testing, Manual Review, Testnet Deployment
LANGUAGE TIMELINE

TypeScript Preliminary comments published on 12/31/2025

Final report published on 01/14/2026

Vulnerability Summary

12 12

Total Findings Resolved Partially Resolved

M 0 Critical
B 0 High
0 Medium
Low 7 Resolved

5 Resolved
.]

M 5 Informational

0 0

Acknowledged Declined

Critical risks are those that impact the safe functioning of
a platform and must be addressed immediately. Users
should be cautious when interacting with any application

with outstanding critical risks.

High risks can include centralization issues and logical
errors. Under specific circumstances, these major risks
can lead to loss of funds, thief of user data, and/or loss

control of the application.

Medium risks may not pose a security risk at a large
scale, but they can affect the overall functioning of a

platform or be used to target a certain group of users.

Low risks can be any of the above, but on a smaller
impact. They generally do not compromise the overall

integrity of the project.

Informational errors are often recommendations to
improve the configuration or certain operations to fall
within industry best practices. They usually do not affect

the overall functioning of the application.

- @ CERTIK TABLE OF CONTENTS | KUCOIN EXTENSION WALLET - CLIENT SIDE

KUCOIN EXTENSION WALLET - CLIENT
SIDE

TABLE OF CONTENTS

I Summary

Executive Summary

Vulnerability Summary

Scope

Approach & Methods

I Review Notes

Limitations

Out of scope dependency

Report Scope
I Findings

KEW-01 : Plaintext Session Secret Leads To MasterKey Exposure

KEW-02 : Locked Wallet Disclose Its Addresses

KEW-05 : DApp Blacklist Bypass

KEW-11 : DApp Spam Blocking_Not Enforced

KEW-12 : Permit Signing_Shows Raw Timestamp Instead Of Expiry Date

KEW-16 : Overly Permissive “object-src’ In CSP

KEW-17 : Using Components With Known Vulnerabilities

KEW-04 : Premature Wallet Unlock During Password Change Flow

KEW-08 : Non-Persistent Device ID In Service Worker

KEW-10 : Usage Of “innerHTML"

KEW-15 : No Structured Display For EIP-4361 SIWE Messages

KEW-18 : Unused "cookies” Permission In Manifest

I Appendix

I Disclaimer

- @ CERTIK SCOPE | KUCOIN EXTENSION WALLET - CLIENT SIDE

SCOPE | KUCOIN EXTENSION WALLET - CLIENT SIDE

Extension(Md5) 369bd5935747d4ed4a2a3241c013efa578d1a58b8

Page Provider(Md5) a44626f236d0145c19f5ced69b557c11ca86acsa

@ CERTIK APPROACH & METHODS | KUCOIN EXTENSION WALLET - CLIENT SIDE

KUCOIN EXTENSION WALLET - CLIENT
SIDE

APPROACH & METHODS

This report has been prepared for Kucoin to discover issues and vulnerabilities in the application of the Kucoin Extension
Wallet - Client Side project. Kucoin wallet extension is a multi-chain browser wallet that allows users to manage crypto

assets, interact with decentralized applications (DApps), and explore the Web3 ecosystem.

The pentest was a manual assessment of the security of the application's functionality, business logic, and vulnerabilities,
such as those cataloged in the OWASP Top 10. The assessment also included a review of security controls and
requirements listed in the OWASP Application Security Verification Standard (ASVS). The pentesters leveraged tools to

facilitate their work. However, the majority of the assessment involved manual analysis.

The main objective of the engagement is to test the overall resiliency of the application to various real-world attacks against
the application's controls and functions and thereby be able to identify its weaknesses and provide recommendations to fix

and improve its overall security posture.

Two members of the CertiK team were involved in completing the engagement, which took place over the course of 8 days in

December 2025 and yielded 12 security-relevant findings. The most significant vulnerability is Dapp blacklist bypass.

Other weaknesses were also found and are detailed in the Findings section of the report. We recommend addressing these

findings to ensure a high level of security standards and industry practices and to raise the security posture of the application.

@ CERTIK REVIEW NOTES | KUCOIN EXTENSION WALLET - CLIENT SIDE

REVIEW NOTES | KUCOIN EXTENSION WALLET - CLIENT SIDE

The assessment focuses on evaluating the security of the KuCoin wallet browser extension. The auditors prepared a list of

threat hypotheses to guide them through the source code review and dynamic testing process.

Threat hypothesis for general wallet security

« How does the application generate the seed phrase and private key?
« How and where does the application store the seed phrase and private key?
« Does the wallet connect to a trustworthy blockchain node?

« Does the application allow users to configure a custom blockchain node? If so, what can a malicious blockchain node do

to the application?
« Does the application utilize a centralized server? What information is sent from the client to the server?
o If the server stores sensitive data, how is it stored?
« Does the application enforce a strong password policy?
« Does the application require 2FA or a PIN code when users attempt to access sensitive information or transfer tokens?
« Does the application use vulnerable third-party libraries?
« Are there any secrets (e.g., APl keys, AWS credentials) leaked in the source code repository?
« Are there any notable bad coding practices (e.g., misuse of cryptography) in the codebase?

« Does the application server enforce TLS connections?

Threat hypothesis related to the browser extension

« What permissions does the extension require, and are they minimal and necessary?

« How does the extension decide which website is allowed to communicate with it?

« How does the extension interact with the web page?

« Is the extension vulnerable to clickjacking?

« Does the application implement an effective content security policy?

« Can a malicious website read or modify data that belongs to the extension without the user's consent?

« Does the extension (often the background script) correctly check the origin of the message before processing it?

« Can a malicious website exploit vulnerabilities such as XSS in the extension page or other active tabs in the browser by

exploiting a vulnerability in the extension?

« Have cross-origin requests and interactions made by the extension been evaluated to ensure adherence to the same-

origin policy and proper use of CORS (Cross-Origin Resource Sharing)?

« Has the message-passing mechanism between the extension's content scripts and background scripts been evaluated

for integrity and security?
« Does the extension communicate with third-party APIs, and is it secure and does not leak sensitive information?

« s the extension vulnerable to social engineering attacks, which could trick users into unauthorized transactions or

revealing sensitive information?

@ CERTIK REVIEW NOTES | KUCOIN EXTENSION WALLET - CLIENT SIDE

« Is the extension's Ul vulnerable to overlay attacks or manipulations that could deceive users into performing unintended

actions?

Limitations
The following functionality was not tested during the assessment because it was not implemented:

e Settings > Security Audit

Out of scope dependency

The extension wallet codebase serves as the underlying entity to interact with one or more out-of-scope dependencies
defined in the package.json file. The scope of the audit treats out-of-scope dependencies as black boxes and assumes
their functional correctness. However, in the real world, dependencies can be compromised, resulting in user experience
issues, application operation disruption, or asset loss. The auditors recommend that the team continually monitor the status
of out-of-scope packages. Establishing an automated alert system for changes or anomalies can help mitigate potential risks

when unexpected activities occur.

Report Scope

The current report is intended for the client-side application of the Kucoin extension wallet. Server-side APIs are covered in a

separate report.

@CER‘TIK

FINDINGS | KUCOIN EXTENSION WALLET - CLIENT SIDE

FINDINGS | KUCOIN EXTENSION WALLET - CLIENT SIDE

12 0

Total Findings Critical High

Medium

Low

5

Informational

This report has been prepared for Kucoin to identify potential vulnerabilities and security issues within the reviewed

codebase. During the course of the security assessment, a total of 12 issues were identified. Leveraging a combination of

Dynamic Testing, Manual Review & Testnet Deployment the following findings were uncovered:

ID Title

Plaintext Session Secret Leads To MasterKey
KEW-01
Exposure

KEW-02 Locked Wallet Disclose Its Addresses

KEW-05 DApp Blacklist Bypass

KEW-11 DApp Spam Blocking Not Enforced

Permit Signing Shows Raw Timestamp
KEW-12 _
Instead Of Expiry Date

KEW-16 Overly Permissive object-src In CSP

KEW-17 Using Components With Known Vulnerabilities

Premature Wallet Unlock During Password
KEW-04
Change Flow

KEW-08 Non-Persistent Device ID In Service Worker

KEW-10 Usage Of innerHTML

No Structured Display For EIP-4361 SIWE

Messages

KEW-15

Category

Insecure Data Storage

Logic Flaws

Logic Flaws

Logic Flaws

Logic Flaws

Security

Misconfiguration

Security

Misconfiguration

Logic Flaws

Logic Flaws

Injection

Logic Flaws

Severity

Low

Low

Low

Low

Low

Low

Low

Informational

Informational

Informational

Informational

Status

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

® Resolved

- @ CERTIK FINDINGS | KUCOIN EXTENSION WALLET - CLIENT SIDE

Category Severity Status

Security
KEW-18 Unused cookies Permission In Manifest]]) Informational ® Resolved
Misconfiguration

@ CERTIK KEW-01 | KUCOIN EXTENSION WALLET - CLIENT SIDE

KEW-01 ‘ Plaintext Session Secret Leads To MasterKey Exposure

Category Severity Location Status

Insecure Data web3-wallet-extension/src/background/service/keyring/index.ts web3-

Low ® Resolved

Storage wallet-extension/src/background/utils/sessionUnlock.ts

I Description

In a secure design, the masterKey should only be decrypted using the user password from wallet_session_master_vault .
The masterKey is the core key used to decrypt mnemonic and private key seeds. However, during mnemonic creation, the
extension stores a second encrypted copy of the masterKey. This copy is encrypted with a random

wallet session_secret , and both the encrypted vault(wallet session_master_vault) and the plaintext secret(

wallet session_secret) are stored together in chrome.session storage.

I Impact

If an attacker gains access to chrome.session storage, they can obtain both wallet session_master vault and
wallet session_secret . With these two values, the masterKey can be decrypted directly. Additionally, the user password
is not required in this process. As a result, the attacker can decrypt seeds and fully compromise mnemonic phrases and

private keys.

I Proof of Concept

1. The wallet extension stores both the encrypted masterKey(wallet session_master_vault) and the associated plaintext

decryption key(wallet_session_secret)in chrome.storage.session , as shown below.

@ CERTIK KEW-01 | KUCOIN EXTENSION WALLET - CLIENT SIDE

boot(password: string) {
(.isBooted()) Error('is booted');

masterKey = generateMasterKey();

masterVault = encryptMasterKeyWithPassword(password, masterKey);
walletDB.set (WALLET_DB_KEYS.WALLET_MASTER_VAULT, masterVault);

booted = 'true';
walletDB.set (WALLET_DB_KEYS.WALLET_BOOTED, booted);

setupSessionAutoUnlock(masterKey);

setupSessionAutoUnlock = (masterKey: string) => {

[sessionSecretFromStore] = Promise.all([
browserSession.get (SESSION_SECRET_KEY),
browserSession.get(SESSION_MASTER_VAULT_KEY),

1);

sessionSecret = sessionSecretFromStore string |
(!'sessionSecret) {

sessionSecret = generateSessionSecret();

{ vault } encryptwWithDetail(sessionSecret, masterKey);

Promise.all([
browserSession.set(SESSION_SECRET_KEY, sessionSecret),
browserSession.set(SESSION_MASTER_VAULT_KEY, vault),

1);
T

2. Decrypt the masterKey using the plaintext-stored wallet_session_secret, then decrypt the mnemonic using the masterKey

without the user's password

@CERTIK

& [0 Elements
Application
O Manifest
Py Service workers
S Storage

Storage
~ BB Local storage
8 chrome-extensio.
~ BB Session storage
B8 chrome-extensio.
~ BB Extension storage
E8 Session
B8 Local
€8 sync
8 Managed
~ B IndexedDB
+ B ke-web3-wallet-db
EB wallet-store
@ Cookies
© Private state tokens
& Interest groups
~ B Shared storage
ch i

Console Sources

Network
4 C Y Filter

Key

autoLockAt

securityToken

~ {data: "BZPHrlUxuZFrlzjp

Performance

Memory _ Application Privacy and security Lighthouse Recorder

iv: “KCrEQRIOXZF,

© Cache storage
Storage buckets

lalgorithn

ZPHrLU1xuZFrz jpl ScVsalier

k PEKDF2",
salt: *0/3lwoLAZaj7bILav]DiFi cepHdTQyxpFY.

7CFCSULS! i 2REE:

+ybeK TCRCS LK 12505 CNihenz9 1 ZFBEXVpk2¥a

par

literations: 900000]}

TERMINAL

pplication ~ACow
) Manifest # Key
%4 Service workers 0 “pernission
8 storage 1
2
orage
- BB Local storage 3 letState”

BB chrome-extensio...
+ BB Session storage
E8 chrome-extensio.
- EB Extension storage
B8 Session
B3 Local
€8 sync
BB Managed
+ B IndexedDB
+ B ke-web3-wallet-db
8 wallet-store
@ Cookies
B Private state tokens
B Interest groups
- B Shared storage

KEW-01 | KUCOIN EXTENSION WALLET - CLIENT SIDE

Value
1766664950026
" *:"9ccc9fs 7 bfe4219db5874841cfed2fed:

{"data*BZPHrIU 1xuZFnlzjp15cV8aMOr+ybeK7CFCSUt3U7SQI2DLXtz50sGNHhgnzOfZFBEXVE
WA4QYA003TQXSMspGBhIcwoV3tCIf+1Z13koiDZVptw=

Value
» [dunpCache: Array(0)}
> “true”
» 7 {\"data\" :\" 2VcLI26S 7Lyl 0gEoRyaDpKE1CAF K ECHRF 4] TYXrUY
<
v lseeds: Array(1), key
» accountGroup: (1
activeGroupld:
activeSeedId: "1
» keyrings: [{1]
» removedIndexes: I}
~ seeds: Array(1)
~o0:

Htn4dR UL+ 81 7SOTPSynb+

11d0a617

- @ CERTIK KEW-01 | KUCOIN EXTENSION WALLET - CLIENT SIDE

1 900000

pt(password, vaultData) {
((resolve, reject) =:

plaintext:
""UDWIL7/sGRqsbXwGWWD38]BbVmvkrHH+DDnpIKSXkZI=""

$

machine foster illness eager artist state artist|used trust rare short video

I Recommendation

It is recommended that the session secret used to encrypt the masterKey (wallet_session_secret) is never stored in
plaintext alongside its corresponding encrypted data in any storage, including chrome.session . Redesign the session
unlocking mechanism to ensure the masterkey remains accessible only via user password authentication. Session secrets,
if necessary, should be derived or protected in a way that their compromise does not enable decryption of critical secrets

without additional authentication.

I Alleviation

- @ CERTIK KEW-01 | KUCOIN EXTENSION WALLET - CLIENT SIDE

[Kucoin, 01/06/2026]: The team heeded the advice and resolved the issue.

@ CERTIK KEW-02 | KUCOIN EXTENSION WALLET - CLIENT SIDE

KEW-02 ‘ Locked Wallet Disclose Its Addresses

Category Severity Location Status

Logic Flaws Low ® Resolved

I Description

The initialize() function retrieves { chainId, accounts, networkVersion, isUnlocked } usingthe
getProviderState method. While it updates _isunlocked and _state.isUnlocked only when isuUnlocked is true, it
always propagates the accounts array to the public provider state and triggers related events, regardless of the lock status.
Specifically, initialize() always calls this._ pushEventHandlers.accountsChanged(accounts) , and

accountsChanged(accounts) then, updates and emits account state.

initialize =

{ chainId, accounts, networkVersion, isUnlocked }: any =
.requestInternalMethods({
method: 'getProviderState',
1)
(isUnlocked) {
._isUnlocked = ;
._state.isUnlocked =

.chainId = chainId;
.networkVersion = networkVersion;
.emit('connect', { chainId });
._pushEventHandlers.chainChanged({

chain: chainId,

networkVersion,

1)
._pushEventHandlers.accountsChanged(accounts);
(error) {
{

._initialized =

._state.initialized

.emit('_initialized');

I Impact

@ CERTIK KEW-02 | KUCOIN EXTENSION WALLET - CLIENT SIDE

Connected DApps can retrieve the user’s wallet address even when the wallet is locked, enabling passive tracking, cross-
site correlation, and loss of privacy without explicit user interaction. This undermines expected lock-state privacy and may

conflict with consent expectations around account exposure.

I Proof of Concept

1. Open a webpage that can access the injected provider (e.g., window.kucoin).

2. Before calling anything, register an accounts listener to capture the leak:

window.kucoin.on('accountsChanged', (accounts) => {

console.log('leaked account:', accounts[0]);

1);

3. Trigger initialization explicitly (works even if it already ran once; the leak happens whenever it runs and receives

accounts):

window.kucoin.providers.evm.initialize()

4. Ensure the wallet is in a locked state. Despite isUnlocked === false , initialize() will still call

accountsChanged(accounts) and the listener from step 2 will receive the address.

> await window.kucoin.providers.evm.initialize()

[kewallet] (82:12:43) [request] { pageProvider.js:86
"method": "getProviderState"

[kewallet] i (82:12:43)[requestisuccess] getProviderState + ¢ s 'ox1’ : : Array(1), P} pageProvider. js:86
» accounts: [' 9a5d4 cb73 412dcf33c6597 fdee ']

: Object

5. The getProviderState function can be called directly to obtain the same information.

kucoin.providers.evm.requestInternalMethods({ method: 'getProviderState',

params: [] })

I Recommendation

The audit team recommends that all logic responsible for updating the public provider state or emitting account-related
events—including account addresses—should explicitly check that the wallet is unlocked before proceeding. Account
information must not be exposed to DApps, external listeners, or the provider state while the wallet remains locked. Update
the initialization and event-handling flow so that account data is only propagated when the wallet has been verified as

unlocked, protecting user privacy as expected.

I Alleviation

[Kucoin, 01/07/2026]: The team heeded the advice and resolved the issue by preventing account data from being returned

while the wallet is locked, eliminating unintended address disclosure.

@ CERTIK KEW-05 | KUCOIN EXTENSION WALLET - CLIENT SIDE

KEW-05 ‘ DApp Blacklist Bypass

Category Severity Location Status

Logic web3-wallet-extension/src/uilviews/Approval/index.tsx:81 web3-wallet-

Low ® Resolved

Flaws extension/src/utils/index.ts:173

I Description

The approval flow normalizes the requesting origin using stripProtocol(origin) and then checks membership against

local allow/deny lists:

normalizeOrigin = stripProtocol(origin);

(dappStore.dappwhitelist.includes(normalizeOrigin)) { ... }
(dappStore.dappBlacklist.includes(normalizeOrigin)) { ... }
{ dappSecurityCheckHandle(normalizeOrigin); }

However, stripProtocol returns URL.host instead of URL.hostname :

stripProtocol(url: string = '"'): string {
URL(url);

u.host;

Because host includes the port, entries stored as plain hostnames (e.g., evil.com) will not match when the same site is
accessed with an explicit port (e.g., https://evil.com:8443). This causes the local blacklist check to miss and fall through
to alternative handling.

I Impact

A blacklisted DApp can evade local blocking by serving content on a non-default port, allowing approval flows to proceed
when they should be denied.

I Recommendation

It is recommended to normalize origins using the hostname only (excluding ports) before performing allow/deny checks, and
apply a single canonical normalization strategy across Ul and backend.

I Alleviation

[Kucoin, 01/07/2026]: The team heeded the advice and resolved the issue by normalizing origins using URL.hostnam e

- @ CERTIK KEW-05 | KUCOIN EXTENSION WALLET - CLIENT SIDE

instead of URL.host , ensuring blacklist and whitelist checks are not bypassed via explicit ports.

@ CERTIK KEW-11 | KUCOIN EXTENSION WALLET - CLIENT SIDE

KEW-11 ‘ DApp Spam Blocking Not Enforced

Category STEVEI Y Location Status

web3-wallet-extension/src/background/service/notification.ts

Logic Flaws Low ® Resolved

I Description

The requestApproval flow includes logic intended to temporarily block a DApp for one minute by checking
dappManager .get(origin)?.isBlocked and blockedTimestamp . If a DApp is marked as blocked and the timestamp is
recent, the request is immediately rejected to prevent repeated approval popups. However, the supporting rejection-tracking
logic (addLastRejectDapp and related code paths) does not actually set isBlocked = true or update
blockedTimestamp based on rejection counters (e.g., lastRejectCount). As a result, the guard in requestApproval

never triggers in practice and requests are not throttled.

- @ CERTIK KEW-11 | KUCOIN EXTENSION WALLET - CLIENT SIDE

// web3-wallet-extension/src/background/service/notification.ts
requestApproval = async (data, winProps?): Promise<any> => {
const origin = this.getOrigin(data);
if (origin) {
const dapp = this.dappManager.get(origin);
if (dapp?.isBlocked && Date.now() - dapp.blockedTimestamp < 60 * 1000 * 1) {
throw ethErrors.provider.userRejectedRequest('User rejected the request.');

private addLastRejectDapp() {

if (this.currentApproval?.data?.params?.$ctx) return;

const origin = this.getOrigin();
if (lorigin) {
return;
}
const dapp = this.dappManager.get(origin);
// same origin and less 1 min
if (dapp && Date.now() - dapp.lastRejectTimestamp < 60 * 1000) {
dapp.lastRejectCount = dapp.lastRejectCount + 1;
dapp.lastRejectTimestamp = Date.now();
else {
this.dappManager.set(origin, {
lastRejectTimestamp: Date.now(),
lastRejectCount: 1,
blockedTimestamp: 0,
isBlocked: false,

1)

I Impact

Users can be overwhelmed with repeated prompts, making the extension difficult to use and increasing the likelihood of
accidental approvals.

I Recommendation

It is recommended to properly set the DApp as blocked when the rejection threshold is reached. Ensure that after a
configurable number of rapid rejections (using lastRejectCount within a specified time window), isBlocked is setto true

and blockedTimestamp is updated accordingly.

I Alleviation

- @ CERTIK KEW-11 | KUCOIN EXTENSION WALLET - CLIENT SIDE

[Kucoin, 01/07/2026]: The team heeded the advice and resolved the issue by blocking DApps after repeated rapid

rejections and enforcing a temporary cooldown.

@ CERTIK KEW-12 | KUCOIN EXTENSION WALLET - CLIENT SIDE

KEW-12 ‘ Permit Signing Shows Raw Timestamp Instead Of Expiry Date

Category Severity Location Status

Logic projects/web3-wallet-
Flaws Low extension/src/uilviews/Approval/components/Sign TypedData/index.tsx ® Resolved

I Description

When a DApp prompts the user to sign a Permit request, the wallet displays the expiry as a Unix timestamp rather than a
user-friendly date and time. Presenting the expiration in this format makes it difficult for users to understand the duration of
the approval period.

I Impact

Users may misunderstand the duration of the authorization and approve permits that last longer than intended, or reject

legitimate requests due to confusion.

I Proof of Concept

@ CERTIK KEW-12 | KUCOIN EXTENSION WALLET - CLIENT SIDE

® @ @ Kucoin Wallet Notification

Approve with Permit

Oxce69abd471ecb/3fab2d85d412dcf33c6597fd0e

@ CERTIK KEW-12 | KUCOIN EXTENSION WALLET - CLIENT SIDE

I Recommendation

It is recommended to convert the raw Unix timestamp to a clear, human-readable date and time format. This will help users

better understand the validity period of their approval and make informed decisions when interacting with Permit requests.

I Alleviation

[Kucoin, 01/07/2026]: The team heeded the advice and resolved the issue.

@ CERTIK KEW-16 | KUCOIN EXTENSION WALLET - CLIENT SIDE

KEW-16 ‘ Overly Permissive object-src In CSP

Category Severity Location Status

web3-wallet-extension/src/manifest.ts

Security Misconfiguration Low ® Resolved

I Description

The wallets' Content Security Policy sets object-src 'self' , which allows the application to load plugin-backed
embedded content (e.g., <object> , <embed> , <applet>) from the same origin. In modern web applications, these

elements are typically unnecessary and represent a legacy execution surface that is commonly restricted.

content_security policy: {

extension_pages: '"script-src 'self' 'wasm-unsafe-eval'; object-src 'self'",

+

I Impact

If an attacker finds a way to inject HTML or control same-origin content, allowing object-src 'self' can broaden the
available vectors to deliver active embedded content, increasing the likelihood of exploitation paths that are otherwise

blocked when plugins/embedded objects are disabled. Even when no immediate exploit is present, this setting keeps an

avoidable attack surface enabled.

I Recommendation

It is recommended to set object-src 'none' unless the application has a strict, validated requirement for embedded
object content. If embedded objects are required, scope the directive as narrowly as possible and ensure the application

cannot be coerced into loading attacker-controlled same-origin resources through upload, redirect, or injection paths.

I Alleviation

[Kucoin, 01/07/2026]: The team heeded the advice and resolved the issue by setting object-src 'none' inthe Content
Security Policy.

@ CERTIK KEW-17 | KUCOIN EXTENSION WALLET - CLIENT SIDE

KEW-17 ‘ Using Components With Known Vulnerabilities

Category Severity Location Status

Security Misconfiguration Low ® Resolved

I Description

Web applications typically rely on several open-source components. Developers can develop rich and complex applications
with little cost and effort by integrating open-source development tools, frameworks, and languages. Security researchers
and testers typically use automated tools to uncover compromised or vulnerable components, then publish their findings on
issue trackers, security advisories, or the National Vulnerability Database (NVD). Any competent attacker who finds this

information can use it to exploit particular application surfaces.

The result of the "npm audit" command shows the application is using outdated libraries with known vulnerabilities.

I Impact

Using unmaintained or outdated dependencies may lead to critical vulnerabilities in the code base. An attacker can use
publicly known vulnerabilities in outdated libraries to gain unauthorized access, manipulate application data, or disrupt

service availability. These actions can lead to data breaches, reputation damage, and potential financial loss.

I Proof of Concept

« web3-wallet-page-provider

npm audit --omit dev

nanoid <3.3.8

Severity: moderate

Predictable results nanoid generation when given non-integer values -
https://github.com/advisories/GHSA-mwcw-c2x4-8c55

fix available via “npm audit fix --force’

Will install nanoid@®3.3.11, which is outside the stated dependency range

node_modules/nanoid

1 moderate severity vulnerability

« web3-wallet-extension

@ CERTIK KEW-17 | KUCOIN EXTENSION WALLET - CLIENT SIDE

nanoid <3.3.8

Severity: moderate

Predictable results nanoid generation when given non-integer values -
https://github.com/advisories/GHSA-mwcw-c2x4-8c55

fix available via “npm audit fix --force"

Will install nanoid@3.3.11, which is outside the stated dependency range

node_modules/nanoid

gs <6.14.1
Severity: high

gs's arrayLimit bypass its bracket notation allows DoS via memory exhaustion -
https://github.com/advisories/GHSA-6rw7-vpxm-498p

fix available via “npm audit fix --force’

Will install qs@6.14.1, which is outside the stated dependency range

node_modules/qs

2 vulnerabilities (1 moderate, 1 high)

I Recommendation
There should be a patch management process in place to:

« Remove unused dependencies, unnecessary features, components, files, and documentation.

« Continuously inventory the versions of both client-side and server-side components (e.g., frameworks, libraries) and their
dependencies using tools like versions, DependencyCheck, retire.js, etc. Continuously monitor sources like CVE and
NVD for vulnerabilities in the components. Use software composition analysis tools to automate the process. Subscribe to

email alerts for security vulnerabilities related to components you use.

« Only obtain components from official sources over secure links. Prefer signed packages to reduce the chance of including

a modified, malicious component.

« Monitor for libraries and components that are unmaintained or do not create security patches for older versions. If

patching is not possible, consider deploying a virtual patch to monitor, detect, or protect against the discovered issue.

Organizations should ensure that there is an ongoing plan for monitoring, triaging, and applying updates or configuration

changes for the lifetime of the application or portfolio.

I Alleviation

[Kucoin, 01/13/2026]: The team heeded the advice and resolved the issue by updating all the dependencies.

@ CERTIK KEW-04 | KUCOIN EXTENSION WALLET - CLIENT SIDE

KEW-04 ‘ Premature Wallet Unlock During Password Change Flow

Category Severity Location Status

Logic Flaws ® Informational ® Resolved

I Description

In the change password page, the Ul calls wallet.unlock(oldPassword) when the old password input loses focus. This
unlocks the wallet before the user confirms the password change and before the full validation process completes. The
unlock operation is only used to check whether the old password is correct and is not required at this stage. As a result, the

wallet remains unlocked longer than necessary.

I Impact

This issue does not directly allow password bypass or fund theft. However, it unnecessarily extends the unlocked state of the
walllet. If future privileged APIs rely on the isUnlocked state, or if race conditions occur, this behavior may increase the attack

surface. It represents a violation of the principle of least privilege.

I Proof of Concept

1. Unnecessarily extend the lifecycle of the masterkey and isUnlocked state

onOldPasswordBlur =
('oldPassword)
{
unlockStatus = wallet.unlock(oldPassword);
('unlockStatus) {

setShowOldPasswordError (I

{

setShowOldPasswordError (

(error) {}

@ CERTIK KEW-04 | KUCOIN EXTENSION WALLET - CLIENT SIDE

unlock(password?: string): Promise<boolean> {

{

masterVault walletDB.get (WALLET_DB_KEYS.WALLET_MASTER_VAULT);
(!masterVvault) Error('No masterVault found');

masterKey decryptMasterKeywithPassword(password, masterVault
string);

.masterKey = masterKey;

.isUnlocked ;

2. A more appropriate verifyPassword function

verifyPassword(password: string): Promise<boolean> {
masterVault = walletDB.get (WALLET_DB_KEYS.WALLET_MASTER_VAULT);

('masterVault) Error('No masterVault found');

decryptMasterKeywithPassword(password, masterVault string);

4

I Recommendation

It is recommended to decouple password validation from the unlocking process by using a dedicated function like
wallet.verifyPassword that does not trigger a full unlock. This approach prevents premature exposure and avoids

unnecessarily extending the lifecycle of the masterKey and isUnlocked state. The wallet should remain locked throughout the

validation phase and only be unlocked during final confirmation. Additionally, implement logic to immediately clear sensitive

data and ensure the wallet stays locked if the flow is interrupted or abandoned.

I Alleviation

- @ CERTIK KEW-04 | KUCOIN EXTENSION WALLET - CLIENT SIDE

[Kucoin, 01/06/2026]: The team heeded the advice and resolved the issue by using the verifyPassword function.

@ CERTIK KEW-08 | KUCOIN EXTENSION WALLET - CLIENT SIDE

KEW-08 ‘ Non-Persistent Device ID In Service Worker

Category Severity Location Status

Logic Flaws ® Informational ® Resolved

I Description

The getUseruniqueId() function is designed to persist a device identifier using window.localStorage . However, in a
Manifest V3 extension environment, background service workers do not provide access to window or localStorage .As a
result, src/utils/storage.ts detects this and disables localStorage support, causing getItem and setItem methods

to return null.

getUserUniqueId = () => {
(!'storage.getItem(BROWSER_EXTENSION_UID_KEY)) {
newId = uuid();
storage.setItem(BROWSER_EXTENSION_UID_KEY, newId);

newId;

storage.getItem(BROWSER_EXTENSION_UID_KEY);

Consequently, getUserUniqueId() generates a new UUID on each invocation in the service worker and never persists it,
while Ul/extension pages may persist a different value. This leads to inconsistent x-device-no values across contexts and

requests.

References: https://developer.chrome.com/docs/extensions/reference/api/storage#can_extensions_use_web_storage _apis

I Impact

The extension produces mismatched or rotating device identifiers, breaking the assumption of a stable “global unique user
identifier.” This can cause inconsistent headers (e.g., x-device-no), disrupt backend session or device-binding logic,

complicate troubleshooting, and weaken any controls that depend on a consistent device identity.

I Recommendation

It is recommended to use the Chrome Extension Storage API (such as chrome.storage.local Or chrome.storage.sync)
to persist the device identifier in all relevant extension contexts, including service workers under Manifest V3. Update the
logic in getUseruniqueId() to retrieve and store the unique identifier using the Chrome Extension Storage API, ensuring a

consistent and persistent device ID is accessible wherever required.

I Alleviation

https://developer.chrome.com/docs/extensions/reference/api/storage#can_extensions_use_web_storage_apis

- @ CERTIK KEW-08 | KUCOIN EXTENSION WALLET - CLIENT SIDE

[Kucoin, 01/12/2026]: The team heeded the advice and resolved the issue by persisting the device ID in

browser.storage.local .

@ CERTIK KEW-10 | KUCOIN EXTENSION WALLET - CLIENT SIDE

KEW-10 | Usage Of innerHTML

Category Severity Location Status

web3-wallet-page-provider/src/chain/evm/notice.ts:51

Injection @ Informational ® Resolved

I Description

The insert() functioninthe Notice class calls the insecure function innerHTML .

// web3-wallet-page-provider/src/chain/evm/notice.ts:51
insert() {
if (!this.el) {

return;

// main
const elMain = document.createElement('div');
elMain.className = 'kucoin-notice-content';

elMain.innerHTML = this.options.content;
this.el?.appendChild(elMain);

The notice function in the same file at line 179 returns a Notice object. This function is called from the following files.

e web3-wallet-page-provider/src/chain/evm/interceptors/switchChain.ts

e web3-wallet-page-provider/src/chain/evm/interceptors/switchwallet.ts

Although the calls are commented out, the intended pattern is considered insecure.

I Impact

In general, any use of innerHTML with dynamic strings can create a Cross-Site Scripting (XSS) vulnerability.

I Recommendation

It is recommended to avoid using innerHTML . If the application does need to use it, ensure that users cannot control the

value passed into the function.

I Alleviation

[Kucoin, 01/07/2026]: The team heeded the advice and resolved the issue by remove the notice.ts

@ CERTIK KEW-15 | KUCOIN EXTENSION WALLET - CLIENT SIDE

KEW-15 ‘ No Structured Display For EIP-4361 SIWE Messages

Category Severity Location Status

Logic Flaws ® Informational ® Resolved

I Description

The wallet currently displays raw EIP-4361 "Sign-In with Ethereum" (SIWE) messages without parsing or presenting them in
a structured interface. As a result, users see the full message text instead of a user interface that extracts and emphasizes
key SIWE fields, which can make important information less visible and reduce clarity during the sign-in process.

I Impact

Users may have difficulty understanding what they are signing, increasing the likelihood of approving deceptive login

prompts.

I Proof of Concept

@ CERTIK KEW-15 | KUCOIN EXTENSION WALLET - CLIENT SIDE

® @ @ Kucoin Wallet Notification

Request Signature

'ﬁ | Wallet Security Testbench

Oxce69a5d471ecb/3fab2d85d412dcf33c659/fd0e

evil.com wants you to sign in with your Ethereum account:
Oxce69abd471ecb73fab2d85d412dcf33c6597fd0e Sign
in to verify domain/origin validation URI: https://evil.com
Version: 1 Chain ID: 1 Nonce: hw4hb59a6saswzha/0bfrqi
Issued At: 2025-12-31T05:16:58.302Z

@ CERTIK KEW-15 | KUCOIN EXTENSION WALLET - CLIENT SIDE

I Recommendation

It is recommended to implement a structured, user-friendly display for EIP-4361 SIWE messages in the wallet interface. The
display should parse the message and clearly highlight essential fields such as domain, statement, address, nonce, and
expiration time, making the sign-in details easy for users to review and understand before approving.

I Alleviation

[Kucoin, 01/07/2026]: The team heeded the advice and resolved the issue.

@ CERTIK KEW-18 | KUCOIN EXTENSION WALLET - CLIENT SIDE

KEW-18 ‘ Unused cookies Permission In Manifest

Category Severity Location Status

web3-wallet-extension/src/manifest.ts

Security Misconfiguration ® Informational ® Resolved

I Description

The extension requests the cookies permission and broad host permissions in its manifest:

// src/manifest.ts

permissions: [

'notifications',
'storage’,
'cookies',

1,

host_permissions: ['<all urls>'],

However, no active use of the extension cookies API (chrome.cookies / browser.cookies) was identified in the
codebase. The only cookie-related reference found is commented-out Ul theme persistence code using js-cookie , which

does not rely on the extension-level cookies permission:

// web3-wallet-extension/src/ui/store/theme.ts (commented)

// import Cookies from 'js-cookie';

// Cookies.set(LS_THEME_KEY, theme, { domain: getCookieDomain(), expires: 365 });

This suggests the cookies permission is currently unnecessary for the implemented functionality.

I Impact

Requesting unnecessary privileges increases the extension’s attack surface and the impact of any extension-context
compromise. If the extension is exploited, the cookies permission combined with broad host access can enable access to

site cookies and session material.

I Recommendation

It is recommended to remove the cookies permission unless it is strictly required for a verified feature. Maintain least-
privilege by requesting only the permissions needed at runtime.

I Alleviation

[Kucoin, 01/07/2026]: The team heeded the advice and resolved the issue by removing the unnecessary cookies

permission from the extension manifest.

@ CERTIK APPENDIX | KUCOIN EXTENSION WALLET - CLIENT SIDE

APPENDIX | KUCOIN EXTENSION WALLET - CLIENT SIDE

I Methodology

CertiK uses a comprehensive penetration testing methodology which adheres to industry best practices and standards in
security assessments including from OWASP (Open Web Application Security Project), NIST, PTES (Penetration Testing

Execution Standard).

Below is a flowchart of our assessment process:

(Start)

A 4

Client-provided info Kickoff Call
-_________-—--_'_-___ *

;Pw Target Reconnaissance

r

Application Mapping

!

Vulnerability Discovery

|

Vulnerability Confirmation

Any
Critical
or High?

Alert Client

Report Creation

v

Findings Presentation Call

I Coverage and Prioritization

As many components as possible will be tested manually. Priority is generally based on three factors: critical security

controls, sensitive data, and the likelihood of vulnerability.

Critical security controls will always receive the top priority in the test. If a vulnerability is discovered in the critical security
control, the entire application is likely to be compromised, resulting in a critical-risk to the business. For most applications,
critical controls will include the login page, but it could also include major workflows such as the checkout function in an

online store.

The Second priority is given to application components that handle sensitive data. This is dependent on business priorities,

@ CERTIK APPENDIX | KUCOIN EXTENSION WALLET - CLIENT SIDE

but common examples include payment card data, financial data, or authentication credentials.

Final priority includes areas of the application that are most likely to be vulnerable. This is based on CertiK’ experience with
similar applications developed using the same technology or with other applications that fit the same business role. For

example, large applications will often have older sections that are less likely to utilize modern security techniques.

I Reconnaissance

CertiK gathers information about the target application from various sources depending on the type of test being performed.
CertiK obtains whatever information that is possible and appropriate from the client during scoping and supplements it with
relevant information that can be gathered from public sources. This helps provide a better overall picture and understanding

of the target.

I Application Mapping

CertiK examines the application, reviewing its contents, and mapping out all its functionalities and components. CertiK makes
use of different tools and techniques to traverse the entire application and document all input areas and processes.
Automated tools are used to scan the application and it is then manually examined for all its parameters and functionalities.

With this, CertiK creates and widens the overall attack surface of the target application.

I Vulnerability Discovery

Using the information that is gathered, CertiK comes up with various attack vectors to test against the application. CertiK
uses a combination of automated tools and manual techniques to identify vulnerabilities and weaknesses. Industry-
recognized testing tools will be used, including Burp Suite, Nikto, Metasploit, and Kali. Furthermore, any controls in place that

would inhibit the successful exploitation of a particular system will be noted.

I Vulnerability Confirmation

After discovering vulnerabilities in the application, CertiK validates the vulnerabilities and assesses its overall impact. To
validate, CertiK performs a Proof-of-Concept of an attack on the vulnerability, simulating real world scenarios to prove the risk

and overall impact of the vulnerability.

Through CertiK's knowledge and experience on attacks and exploitation techniques, CertiK is able to process all
weaknesses and examine how they can be combined to compromise the application. CertiK may use different attack chains,

leveraging different weaknesses to escalate and gain a more significant compromise.

To minimize any potential negative impact, vulnerability exploitation was only attempted when it would not adversely affect
production applications and systems, and then only to confirm the presence of a specific vulnerability. Any attack with the
potential to cause system downtime or seriously impact business continuity was not performed. Vulnerabilities were never
exploited to delete or modify data; only read-level access was attempted. If it appeared possible to modify data, this was

noted in the list of vulnerabilities below.

I Immediate Escalation of High or Critical Findings

@ CERTIK APPENDIX | KUCOIN EXTENSION WALLET - CLIENT SIDE

If critical or high findings are found whereby application elements are compromised, client’s key security contacts will be

notified immediately.

I Risk Assessment

Risk Level Exploitability

-~ 9.0- Root-level or full-system compromise, o]
Critical Trivial and straightforward
10.0 large-scale data breach

o o Easy, vulnerability details or exploit code are
) Elevated privilege access, significant data i] -
High 7.0-8.9) publicly available, but may need additional
loss or downtime]))
attack vectors (e.g., social engineering)

Limited access but can still cause loss of Difficult, requires a skilled attacker, needs

tangible assets, which may violate, harm, additional attack vectors, attacker must

Medium 4.0-6.9) o)))
or impede the org's mission, reputation, reside on the same network, requires user
or interests. privileges
o) Extremely difficult, requires local or physical
Low 0.1-3.9 Very little impact on an org's business

system access

Not exploitable but rather is a weakness that
) Discloses information that may be of may be useful to an attacker should a higher
Informational 0.0) T
interest to an attacker. risk issue be found that allows for a system

exploit

@ CERTIK DISCLAIMER | KUCOIN EXTENSION WALLET - CLIENT SIDE

DISCLAIMER | CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,
disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions
provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the
Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and
conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person
for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report
is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or
project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee
regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.
This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report
represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company
and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack
vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that
your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,
where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of
technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY
PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL
FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER
APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,
OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT
LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM
COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO
WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR
OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY
OTHER PERSON’'S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY
SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL
CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

@ CERTIK DISCLAIMER | KUCOIN EXTENSION WALLET - CLIENT SIDE

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’'S
REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,
APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR
RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE
CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK'S AGENTS MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR
CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO
LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND
MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS ARESULT OF THE USE OF ANY
CONTENT, OR (Il) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING
FROM CUSTOMER'’'S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR
CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY
OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO
CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY
IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT
CERTIK'S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE ATHIRD PARTY OR OTHER
BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO
SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH
SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE
BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,
SHALL BE ATHIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO
SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH
REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION
UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR
MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,
REGULATORY, OR OTHER ADVICE.

Elevating Your \Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is
the largest blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-
based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,
we're able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

000000

Kucain"Extension Wallet #Client Side Security Assessment | CertiK Assessed on Jan 14th, 2026 | Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

